Monitoring the Size and Lateral Dynamics of ErbB1 Enriched Membrane Domains through Live Cell Plasmon Coupling Microscopy
نویسندگان
چکیده
To illuminate the role of the spatial organization of the epidermal growth factor receptor (ErbB1) in signal transduction quantitative information about the receptor topography on the cell surface, ideally on living cells and in real time, are required. We demonstrate that plasmon coupling microscopy (PCM) enables to detect, size, and track individual membrane domains enriched in ErbB1 with high temporal resolution. We used a dendrimer enhanced labeling strategy to label ErbB1 receptors on epidermoid carcinoma cells (A431) with 60 nm Au nanoparticle (NP) immunolabels under physiological conditions at 37°C. The statistical analysis of the spatial NP distribution on the cell surface in the scanning electron microscope (SEM) confirmed a clustering of the NP labels consistent with a heterogeneous distribution of ErbB1 in the plasma membrane. Spectral shifts in the scattering response of clustered NPs facilitated the detection and sizing of individual NP clusters on living cells in solution in an optical microscope. We tracked the lateral diffusion of individual clusters at a frame rate of 200 frames/s while simultaneously monitoring the configurational dynamics of the clusters. Structural information about the NP clusters in their membrane confinements were obtained through analysis of the electromagnetic coupling of the co-confined NP labels through polarization resolved PCM. Our studies show that the ErbB1 receptor is enriched in membrane domains with typical diameters in the range between 60-250 nm. These membrane domains exhibit a slow lateral diffusion with a diffusion coefficient of D = |0.0054±0.0064| µm(2)/s, which is almost an order of magnitude slower than the mean diffusion coefficient of individual NP tagged ErbB1 receptors under identical conditions.
منابع مشابه
Insights from a nanoparticle minuet: two-dimensional membrane profiling through silver plasmon ruler tracking.
Individual pairs of polymer-tethered silver nanoparticles, so-called silver plasmon rulers, enable distance and orientation measurements on the nanoscale. The reduced linear dichroism and the spectrum of the light scattered from individual plasmon rulers encode information about their orientation and average interparticle separation, respectively. We took advantage of the gain in information si...
متن کاملWidefield microscopy for live imaging of lipid domains and membrane dynamics
Within the lateral organisation of plasma membranes of polarized cell types there exist heterogeneous microdomains of distinct lipid composition, the small size of which (10-200 nm) makes them difficult to discern with traditional microscopic techniques, but which can be distinguished on the basis of lipid packing. These microdomains or rafts can be concentrated in larger more visible liquid-or...
متن کاملResolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy.
We use plasmon coupling between individual gold nanoparticle labels to monitor subdiffraction limit distances in live cell nanoparticle tracking experiments. While the resolving power of our optical microscope is limited to approximately 500 nm, we improve this by more than an order of magnitude by detecting plasmon coupling between individual gold nanoparticle labels using a ratiometric detect...
متن کاملDissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale
The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...
متن کاملDesign of the optimal magnetic field in application of functionalized CNT-based drug delivery toward the cell membrane: Computational Analysis
Recently, Carbon Nano (CN) structures are widely used in medical applications, especially the detection and treatment of cancer disease. Among various types of CNs, Carbone Nano Tubes (CNTs) attracted many researchers' attention to consider them toward clinical application. Regarding the intrinsic structure of CNTs, they can be used widely in drug delivery applications. Functionalized CNTs and ...
متن کامل